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1. Basic properties

The residue �eld of Qp is Fp, which is not algebraically closed. Therefore Qp is
not algebraically closed. We extend the p-adic valuation and absolute value on Qp
to Q̄p, denoted by |·| and v. Note that v on Q̄p is no longer discrete. By de�nition,
we have v(x) = [L : Qp]−1v(NL/Qp

x), if x ∈ L with L/Qp a �nite extension. We

normalize so that v(p) = 1, |p| = p−1.

Lemma 1.1. Let m be a positive integer coprime to p. The m-th roots of unity
{ζi, 1 ≤ i ≤ m} in Q̄p are pairwise non-congruent modulo v i.e. v(ζi−ζj) = 0, i 6= j.

Proof. Suppose {ζi, 1 ≤ i ≤ m− 1} are the m-th roots of unity apart from 1. Then∏
1≤i≤m−1(1− ζi) = Xm−1

X−1 |X=1 = m. But v(m) = 0, so v(1− ζi) = 0. �

Proposition 1.2. Q̄p is not complete.

Proof. Suppose Q̄p is complete. Then the following series should converge to an
element α ∈ Q̄p.

α =

∞∑
n=1

ζnp
n,(1)

where ζn is a primitive n-th root of unity in Q̄p if p 6 |n, and ζn := 1 if p|n. LetK/Qp
be a �nite extension such that α ∈ K. We prove by induction that K contains all
the ζn's. But then since the residue �eld of K is �nite, we have a contradiction, by
the previous Lemma.

To show that K contains all the ζn, suppose p 6 |m and K contains ζn for n < m.
Then K contains the element

β = p−m(α−
∑
n<m

ζnp
n).(2)

But β ≡ ζm mod p, so by Hensel's lemma, the element ζm mod p, which is con-
tained in the residue �eld of K, lifts to an m-th root of unity in K. But the latter
has to be ζm itself by the previous Lemma. �

We let Cp be the p-adic completion of Q̄p, called the �eld of p-adic complex
numbers.

Proposition 1.3. Cp is algebraically closed.

Proof. Let f(x) ∈ Cp[x], we need to show Cp contains a root of f(x). Without
loss of generality, we may assume f(x) is monic with coe�cients in O = OCp

.
We pick a sequence of monic polynomials fn(X) ∈ OQ̄p

[x] that coe�cient-wise

converge to f(X). Say fn+1 − fn has coe�cients in {v ≥ Nn} , Nn → ∞. Let αn
1
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be a root of fn(X) in Q̄p. Then necessarily v(αn) ≥ 0. We have v(fn+1(αn)) =
v(fn+1(αn)− fn(αn)) ≥ Nn →∞. But if fn+1(X) =

∏
i(X − βi), then

v(fn+1(αn)) =
∑
i

v(αn − βi) ≥ Nn,

so fn+1 has a root αn+1 with v(αn+1 − αn) ≥ Nn/ deg f. Thus we get a Cauchy
sequence {αn}n ⊂ Q̄p, whose limit in Cp is a root of f(X).

Alternatively, let α be a root of f(X) in C̄p. Find a monic polynomial g(X) ∈
OQ̄p

[X] that is coe�cient-wise close to f(X) and let β be a root of g(X). Let

σ ∈ Gal(C̄p/Cp). Then v(α−σα) ≥ min {v(α− β), v(σα− β)} = v(α−β). If σ 6= 1,
then we get an upper bound of v(α−β) that only depends on α. Let βi be the roots
of g, then v(g(α)) =

∑
v(α−βi) has an upper bound. But v(g(α)) = v(g(α)−f(α))

can be made arbitrarily large if we choose g to be close to f . The argument in this
paragraph implicitly proves what is called Krasner's Lemma. �

2. The theorem of Tate and Ax

The main reference for the following material is the paper Zeros of Polynomials
over Local Fields - The Galois Action by James Ax, 1969.

The Galois group G = Gal(Q̄p/Qp) acts on Cp by isometries. Let H be a closed
subgroup of G. We want to determine the �xed �eld CHp . Of course K := (Q̄p)H ⊂
CHp , and also K̂ ⊂ CHp becauseH acts continuously on Cp. Here K̂ is the completion
(closure) of K inside Cp.

Theorem 2.1 (Tate-Ax). CHp = K̂.

Proof. Let x ∈ CHp . Without loss of generality we may assume v(x) ≥ 0. Let

{xn} ⊂ Q̄p be a sequence converging to x. We may assume v(xn − x) > n. For
g ∈ H we have

v(gxn−xn) = v(gxn−x+x−xn) ≥ min {v(gxn − x), v(xn − x)} = v(xn−x) > n.

By the following proposition, this implies that there exists yn ∈ K such that v(yn−
xn) ≥ n− p/(p− 1)2. Then we have yn → α. �

Proposition 2.2. Let K be an algebraic extension of Qp. Let v be the p-adic
valuation on K normalized by v(p) = 1. Let x ∈ K̄ be such that for all g ∈
GK = Gal(K̄/K), v(gx − x) ≥ n. Then there exists y ∈ K such that v(x − y) ≥
n − p/(p − 1)2. Simply put, if a small ball of K̄ contains a whole Galois orbit,
then by enlarging the small ball by a constant scalar, we get a ball that contains an
element of K.

We need the following lemma to prove the proposition.

Lemma 2.3. Let f(X) ∈ K̄[X] be a monic polynomial of degree d > 1. If d is not
a power of p, let q be the p-part of d. If d is a power of p, let q = d/p. Suppose
D = {x|v(x− x0) ≥ λ} ⊂ K̄ is a ball containing all the roots of f .

(1) If d is not a p power, D contains a root of f [q] := f (q)/q!.
(2) If d is a p power, let D′ = {x|v(x− x0) ≥ λ− 1/(d− q)}, an enlargement

of D. Then D′ contains a root of f [q].

Remark 2.4. This is a p-adic analogue of Gauss' Theorem: If a ball in C contains
all the roots of a polynomial f , then it contains all the roots of f ′.
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Proof of Lemma. Assume we are in case (1). Without loss of generality we may
assume the ball D is centered around x0 = 0. Write f(X) =

∑n
i=0 aiX

i. Then

f [q](0) = aq, so v(f [q](0)) = v(aq) ≥ (d− q)λ. Let βi be the roots of f [q], then

f [q](0) =

(
d
q

) d−q∏
i=1

βi

since the leading coe�cient of f [q] is

(
d
q

)
. But v(

(
d
q

)
) = 0, so there is some

βi for which v(βi) ≥ λ.

In case (2), the argument is the same, the only di�erence being that now v(

(
d
q

)
) =

1.1 �

Proof of Proposition. We prove the following statement by induction on the degree
d of x.

Statement: If x ∈ K̄ is such that for all g ∈ GK , v(x−gx) ≥ n, then there exists
y ∈ K such that

v(x− y) ≥ n−
[logp d]∑
i=1

1

pi − pi−1
.

Note that this inequality is stronger than that asserted in the Proposition. Let
f(X) be the monic minimal polynomial of x over K, of degree d.

For d = 1 we can take y = x. For the induction step, let d > 1. Fist suppose d
is not a p power. Let q be the p-part of d. By Lemma, f [q] has a root β satisfying
v(x− β) ≥ n. For any g ∈ GK , we have

v(β − gβ) ≥ min {v(β − x), v(x− gx), v(gx− gβ)} ≥ n.
Let d(β) be the degree of β, then d(β) ≤ d − q. By induction hypothesis, there is
an element y ∈ K with

v(β − y) ≥ n−
[logp d(β)]∑

i=1

1

pi − pi−1
.

But v(x− y) ≥ min {v(x− β), v(β − y)}. So the statement is true for d.
Suppose d is a p power. Let q = d/p. Then by Lemma f [q] has a root β satisfying

v(x− β) ≥ n− 1/(d− q). As before we see that for all g ∈ GK ,
v(gβ − β) ≥ n− 1/(d− q).

By induction hypothesis we �nd a y ∈ K such that

v(β − y) ≥ n− 1/(d− q)−
[logp d(β)]∑

i=1

1

pi − pi−1
.

Then

v(x− y) ≥ n− 1/(d− q)−
[logp d(β)]∑

i=1

1

pi − pi−1
≥ n−

[logp d]∑
i=1

1

pi − pi−1
.

�

1In the two cases when computing v(

(
d
q

)
), simply use the formula v(n!) =

∑
i[n/p

i].
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Remark 2.5. In the above proof, the element y that we found is in fact the root
of the linear polynomial f (d−1), as can be seen from the induction process. This is
none other than the arithmetic average of the conjugates of x. However if one makes
the naive estimate v(y) = v(

∑
g gx− x)− v(d) ≥ ming v(gx− x)− v(d) ≥ n− v(d),

the lower bound depends on the degree d of x, which is not good enough for our
purpose.
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