THE p-ADIC COMPLEX NUMBERS

YIHANG ZHU

1. Basic properties

The residue field of \mathbb{Q}_{p} is \mathbb{F}_{p}, which is not algebraically closed. Therefore \mathbb{Q}_{p} is not algebraically closed. We extend the p-adic valuation and absolute value on \mathbb{Q}_{p} to $\overline{\mathbb{Q}}_{p}$, denoted by $|\cdot|$ and v. Note that v on $\overline{\mathbb{Q}}_{p}$ is no longer discrete. By definition, we have $v(x)=\left[L: \mathbb{Q}_{p}\right]^{-1} v\left(\mathrm{~N}_{L / \mathbb{Q}_{p}} x\right)$, if $x \in L$ with L / \mathbb{Q}_{p} a finite extension. We normalize so that $v(p)=1,|p|=p^{-1}$.

Lemma 1.1. Let m be a positive integer coprime to p. The m-th roots of unity $\left\{\zeta_{i}, 1 \leq i \leq m\right\}$ in $\overline{\mathbb{Q}}_{p}$ are pairwise non-congruent modulo v i.e. $v\left(\zeta_{i}-\zeta_{j}\right)=0, i \neq j$.

Proof. Suppose $\left\{\zeta_{i}, 1 \leq i \leq m-1\right\}$ are the m-th roots of unity apart from 1. Then $\prod_{1 \leq i \leq m-1}\left(1-\zeta_{i}\right)=\left.\frac{\bar{X}^{m}-1}{X-1}\right|_{X=1}=m$. But $v(m)=0$, so $v\left(1-\zeta_{i}\right)=0$.

Proposition 1.2. $\overline{\mathbb{Q}}_{p}$ is not complete.
Proof. Suppose $\overline{\mathbb{Q}}_{p}$ is complete. Then the following series should converge to an element $\alpha \in \overline{\mathbb{Q}}_{p}$.

$$
\begin{equation*}
\alpha=\sum_{n=1}^{\infty} \zeta_{n} p^{n} \tag{1}
\end{equation*}
$$

where ζ_{n} is a primitive n-th root of unity in $\overline{\mathbb{Q}}_{p}$ if $p \nmid n$, and $\zeta_{n}:=1$ if $p \mid n$. Let K / \mathbb{Q}_{p} be a finite extension such that $\alpha \in K$. We prove by induction that K contains all the ζ_{n} 's. But then since the residue field of K is finite, we have a contradiction, by the previous Lemma.

To show that K contains all the ζ_{n}, suppose $p \nmid m$ and K contains ζ_{n} for $n<m$. Then K contains the element

$$
\begin{equation*}
\beta=p^{-m}\left(\alpha-\sum_{n<m} \zeta_{n} p^{n}\right) \tag{2}
\end{equation*}
$$

But $\beta \equiv \zeta_{m} \bmod p$, so by Hensel's lemma, the element $\zeta_{m} \bmod p$, which is contained in the residue field of K, lifts to an m-th root of unity in K. But the latter has to be ζ_{m} itself by the previous Lemma.

We let \mathbb{C}_{p} be the p-adic completion of $\overline{\mathbb{Q}}_{p}$, called the field of p-adic complex numbers.

Proposition 1.3. \mathbb{C}_{p} is algebraically closed.
Proof. Let $f(x) \in \mathbb{C}_{p}[x]$, we need to show \mathbb{C}_{p} contains a root of $f(x)$. Without loss of generality, we may assume $f(x)$ is monic with coefficients in $\mathcal{O}=\mathcal{O}_{\mathbb{C}_{p}}$. We pick a sequence of monic polynomials $f_{n}(X) \in \mathcal{O}_{\overline{\mathbb{Q}}_{p}}[x]$ that coefficient-wise converge to $f(X)$. Say $f_{n+1}-f_{n}$ has coefficients in $\left\{v \geq N_{n}\right\}, N_{n} \rightarrow \infty$. Let α_{n}
be a root of $f_{n}(X)$ in $\overline{\mathbb{Q}}_{p}$. Then necessarily $v\left(\alpha_{n}\right) \geq 0$. We have $v\left(f_{n+1}\left(\alpha_{n}\right)\right)=$ $v\left(f_{n+1}\left(\alpha_{n}\right)-f_{n}\left(\alpha_{n}\right)\right) \geq N_{n} \rightarrow \infty$. But if $f_{n+1}(X)=\prod_{i}\left(X-\beta_{i}\right)$, then

$$
v\left(f_{n+1}\left(\alpha_{n}\right)\right)=\sum_{i} v\left(\alpha_{n}-\beta_{i}\right) \geq N_{n}
$$

so f_{n+1} has a root α_{n+1} with $v\left(\alpha_{n+1}-\alpha_{n}\right) \geq N_{n} / \operatorname{deg} f$. Thus we get a Cauchy sequence $\left\{\alpha_{n}\right\}_{n} \subset \overline{\mathbb{Q}}_{p}$, whose limit in \mathbb{C}_{p} is a root of $f(X)$.

Alternatively, let α be a root of $f(X)$ in $\overline{\mathbb{C}}_{p}$. Find a monic polynomial $g(X) \in$ $\mathcal{O}_{\overline{\mathbb{Q}}_{p}}[X]$ that is coefficient-wise close to $f(X)$ and let β be a root of $g(X)$. Let $\sigma \in \operatorname{Gal}\left(\overline{\mathbb{C}}_{p} / \mathbb{C}_{p}\right)$. Then $v(\alpha-\sigma \alpha) \geq \min \{v(\alpha-\beta), v(\sigma \alpha-\beta)\}=v(\alpha-\beta)$. If $\sigma \neq 1$, then we get an upper bound of $v(\alpha-\beta)$ that only depends on α. Let β_{i} be the roots of g, then $v(g(\alpha))=\sum v\left(\alpha-\beta_{i}\right)$ has an upper bound. But $v(g(\alpha))=v(g(\alpha)-f(\alpha))$ can be made arbitrarily large if we choose g to be close to f. The argument in this paragraph implicitly proves what is called Krasner's Lemma.

2. The theorem of Tate and Ax

The main reference for the following material is the paper Zeros of Polynomials over Local Fields - The Galois Action by James Ax, 1969.

The Galois group $G=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ acts on \mathbb{C}_{p} by isometries. Let H be a closed subgroup of G. We want to determine the fixed field \mathbb{C}_{p}^{H}. Of course $K:=\left(\overline{\mathbb{Q}}_{p}\right)^{H} \subset$ \mathbb{C}_{p}^{H}, and also $\hat{K} \subset \mathbb{C}_{p}^{H}$ because H acts continuously on \mathbb{C}_{p}. Here \hat{K} is the completion (closure) of K inside \mathbb{C}_{p}.
Theorem 2.1 (Tate-Ax). $\mathbb{C}_{p}^{H}=\hat{K}$.
Proof. Let $x \in \mathbb{C}_{p}^{H}$. Without loss of generality we may assume $v(x) \geq 0$. Let $\left\{x_{n}\right\} \subset \overline{\mathbb{Q}}_{p}$ be a sequence converging to x. We may assume $v\left(x_{n}-x\right)>n$. For $g \in H$ we have
$v\left(g x_{n}-x_{n}\right)=v\left(g x_{n}-x+x-x_{n}\right) \geq \min \left\{v\left(g x_{n}-x\right), v\left(x_{n}-x\right)\right\}=v\left(x_{n}-x\right)>n$.
By the following proposition, this implies that there exists $y_{n} \in K$ such that $v\left(y_{n}-\right.$ $\left.x_{n}\right) \geq n-p /(p-1)^{2}$. Then we have $y_{n} \rightarrow \alpha$.

Proposition 2.2. Let K be an algebraic extension of \mathbb{Q}_{p}. Let v be the p-adic valuation on K normalized by $v(p)=1$. Let $x \in \bar{K}$ be such that for all $g \in$ $G_{K}=\operatorname{Gal}(\bar{K} / K), v(g x-x) \geq n$. Then there exists $y \in K$ such that $v(x-y) \geq$ $n-p /(p-1)^{2}$. Simply put, if a small ball of \bar{K} contains a whole Galois orbit, then by enlarging the small ball by a constant scalar, we get a ball that contains an element of K.

We need the following lemma to prove the proposition.
Lemma 2.3. Let $f(X) \in \bar{K}[X]$ be a monic polynomial of degree $d>1$. If d is not a power of p, let q be the p-part of d. If d is a power of p, let $q=d / p$. Suppose $D=\left\{x \mid v\left(x-x_{0}\right) \geq \lambda\right\} \subset \bar{K}$ is a ball containing all the roots of f.
(1) If d is not a p power, D contains a root of $f^{[q]}:=f^{(q)} / q$!.
(2) If d is a p power, let $D^{\prime}=\left\{x \mid v\left(x-x_{0}\right) \geq \lambda-1 /(d-q)\right\}$, an enlargement of D. Then D^{\prime} contains a root of $f^{[q]}$.

Remark 2.4. This is a p-adic analogue of Gauss' Theorem: If a ball in \mathbb{C} contains all the roots of a polynomial f, then it contains all the roots of f^{\prime}.

Proof of Lemma. Assume we are in case (1). Without loss of generality we may assume the ball D is centered around $x_{0}=0$. Write $f(X)=\sum_{i=0}^{n} a_{i} X^{i}$. Then $f^{[q]}(0)=a_{q}$, so $v\left(f^{[q]}(0)\right)=v\left(a_{q}\right) \geq(d-q) \lambda$. Let β_{i} be the roots of $f^{[q]}$, then

$$
f^{[q]}(0)=\binom{d}{q} \prod_{i=1}^{d-q} \beta_{i}
$$

since the leading coefficient of $f^{[q]}$ is $\binom{d}{q}$. But $v\left(\binom{d}{q}\right)=0$, so there is some β_{i} for which $v\left(\beta_{i}\right) \geq \lambda$.

In case (2), the argument is the same, the only difference being that now $v\left(\binom{d}{q}\right)=$ 11

Proof of Proposition. We prove the following statement by induction on the degree d of x.

Statement: If $x \in \bar{K}$ is such that for all $g \in G_{K}, v(x-g x) \geq n$, then there exists $y \in K$ such that

$$
v(x-y) \geq n-\sum_{i=1}^{\left[\log _{p} d\right]} \frac{1}{p^{i}-p^{i-1}}
$$

Note that this inequality is stronger than that asserted in the Proposition. Let $f(X)$ be the monic minimal polynomial of x over K, of degree d.

For $d=1$ we can take $y=x$. For the induction step, let $d>1$. Fist suppose d is not a p power. Let q be the p-part of d. By Lemma, $f^{[q]}$ has a root β satisfying $v(x-\beta) \geq n$. For any $g \in G_{K}$, we have

$$
v(\beta-g \beta) \geq \min \{v(\beta-x), v(x-g x), v(g x-g \beta)\} \geq n
$$

Let $d(\beta)$ be the degree of β, then $d(\beta) \leq d-q$. By induction hypothesis, there is an element $y \in K$ with

$$
v(\beta-y) \geq n-\sum_{i=1}^{\left[\log _{p} d(\beta)\right]} \frac{1}{p^{i}-p^{i-1}}
$$

But $v(x-y) \geq \min \{v(x-\beta), v(\beta-y)\}$. So the statement is true for d.
Suppose d is a p power. Let $q=d / p$. Then by Lemma $f^{[q]}$ has a root β satisfying $v(x-\beta) \geq n-1 /(d-q)$. As before we see that for all $g \in G_{K}$,

$$
v(g \beta-\beta) \geq n-1 /(d-q)
$$

By induction hypothesis we find a $y \in K$ such that

$$
v(\beta-y) \geq n-1 /(d-q)-\sum_{i=1}^{\left[\log _{p} d(\beta)\right]} \frac{1}{p^{i}-p^{i-1}}
$$

Then

$$
v(x-y) \geq n-1 /(d-q)-\sum_{i=1}^{\left[\log _{p} d(\beta)\right]} \frac{1}{p^{i}-p^{i-1}} \geq n-\sum_{i=1}^{\left[\log _{p} d\right]} \frac{1}{p^{i}-p^{i-1}}
$$

[^0]Remark 2.5. In the above proof, the element y that we found is in fact the root of the linear polynomial $f^{(d-1)}$, as can be seen from the induction process. This is none other than the arithmetic average of the conjugates of x. However if one makes the naive estimate $v(y)=v\left(\sum_{g} g x-x\right)-v(d) \geq \min _{g} v(g x-x)-v(d) \geq n-v(d)$, the lower bound depends on the degree d of x, which is not good enough for our purpose.

[^0]: ${ }^{1}$ In the two cases when computing $v\left(\binom{d}{q}\right.$, simply use the formula $v(n!)=\sum_{i}\left[n / p^{i}\right]$.

