THE p-ADIC COMPLEX NUMBERS

YIHANG ZHU

1. BASIC PROPERTIES

The residue field of Q,, is F,,, which is not algebraically closed. Therefore Q, is
not algebraically closed. We extend the p-adic valuation and absolute value on Q,
to Qp, denoted by |-| and v. Note that v on Qp is no longer discrete. By definition,
we have v(z) = [L : Q] 'v(Np g, x), if € L with L/Q, a finite extension. We
normalize so that v(p) = 1,|p| = p~L.

Lemma 1.1. Let m be a positive integer coprime to p. The m-th roots of unity
{G,1 < i <m} inQ, are pairwise non-congruent modulo v i.e. v(¢;—¢;) = 0,7 # j.

Proof. Suppose {¢;,1 < i < m — 1} are the m-th roots of unity apart from 1. Then
[hicicm 11— G) = £ x=1 = m. But v(m) =0, so v(1 — ¢;) = 0. O

Proposition 1.2. Q, is not complete.

Proof. Suppose Q, is complete. Then the following series should converge to an
element a € Q.

(1) Q= Zgnpna
n=1

where (,, is a primitive n-th root of unity in Q, if p /n, and ¢, := 1if p|n. Let K/Q,
be a finite extension such that a € K. We prove by induction that K contains all
the (,,’s. But then since the residue field of K is finite, we have a contradiction, by
the previous Lemma.

To show that K contains all the ¢, suppose p fm and K contains (, for n < m.
Then K contains the element

(2) B=p = ™).
n<m
But 8 = (,,, mod p, so by Hensel’s lemma, the element (,, mod p, which is con-

tained in the residue field of K, lifts to an m-th root of unity in K. But the latter
has to be (,, itself by the previous Lemma. (I

We let C, be the p-adic completion of Q,, called the field of p-adic complex
numbers.

Proposition 1.3. C, is algebraically closed.

Proof. Let f(z) € Cplz], we need to show C, contains a root of f(x). Without

loss of generality, we may assume f(z) is monic with coefficients in O = Oc,.

We pick a sequence of monic polynomials f,(X) € Og [z] that coeficient-wise

converge to f(X). Say fni+1 — fn has coefficients in {v > N,},N,, — co. Let a,
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be a root of f,(X) in Q,. Then necessarily v(c,) > 0. We have v(fi1(an)) =
V(fag1(an) = falom)) = Ny — oo, But if f, 11 (X) = [[,(X — 8), then

o(furi(@n)) = 3 vlan — B) = N,
80 fn+1 has a root a1 with v(an11 — an) > N,/ deg f. Thus we get a Cauchy
sequence {a,}, C Q,, whose limit in C,, is a root of f(X).

Alternatively, let a be a root of f(X) in C,. Find a monic polynomial g(X) €
Og, [X] that is coefficient-wise close to f(X) and let 8 be a root of g(X). Let
o € Gal(C,/C,). Then v(a—oa) > min {v(a — f),v(ca — B)} = v(a—p). Ifo # 1,
then we get an upper bound of v(«—3) that only depends on . Let §; be the roots
of g, then v(g(a)) = > v(a— ;) has an upper bound. But v(g(a)) = v(g(a)— f(a))
can be made arbitrarily large if we choose g to be close to f. The argument in this
paragraph implicitly proves what is called Krasner’s Lemma. O

2. THE THEOREM OF TATE AND AX

The main reference for the following material is the paper Zeros of Polynomials
over Local Fields - The Galois Action by James Ax, 1969.

The Galois group G = Gal(Q,/Q,) acts on C, by isometries. Let H be a closed
subgroup of G. We want to determine the fixed field C['. Of course K := Q)" c

(C;I, and also K C (Cf because H acts continuously on C,,. Here K is the completion
(closure) of K inside C,.

Theorem 2.1 (Tate-Ax). C[f = K.

Proof. Let z € C;I . Without loss of generality we may assume v(z) > 0. Let
{z,} C Q, be a sequence converging to x. We may assume v(z, — z) > n. For
g € H we have

v(gxy, —x,) = v(gx, —x+2 —x,) > min{v(gx, — z),v(x, —x)} = v(z, —x) > n.

By the following proposition, this implies that there exists y,, € K such that v(y,, —
x,) >n—p/(p—1)2 Then we have y, — a. O

Proposition 2.2. Let K be an algebraic extension of Q,. Let v be the p-adic
valuation on K normalized by v(p) = 1. Let x € K be such that for all g €
Gk = Gal(K/K),v(gx — x) > n. Then there exists y € K such that v(x —y) >
n—p/(p —1)%. Simply put, if a small ball of K contains a whole Galois orbit,
then by enlarging the small ball by a constant scalar, we get a ball that contains an
element of K.

We need the following lemma to prove the proposition.

Lemma 2.3. Let f(X) € K[X] be a monic polynomial of degree d > 1. If d is not
a power of p, let q be the p-part of d. If d is a power of p, let ¢ = d/p. Suppose
D = {z|v(x — z¢) > A\} C K is a ball containing all the roots of f.
(1) If d is not a p power, D contains a root of fl4l .= £(@) /g1,
(2) If d is a p power, let D' = {x|v(x — 29) > X —1/(d —q)}, an enlargement
of D. Then D' contains a root of fl9.

Remark 2.4. This is a p-adic analogue of Gauss’ Theorem: If a ball in C contains
all the roots of a polynomial f, then it contains all the roots of f’.
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Proof of Lemma. Assume we are in case (1). Without loss of generality we may
assume the ball D is centered around zo = 0. Write f(X) = Y. ja;X*. Then
Fl4(0) = ag, so v(fl9(0)) = v(a,) > (d — )\ Let B; be the roots of fl9, then

79(0) = ( ’ )d]jlﬁ

since the leading coefficient of f19 is ( Z ) . But v(( ;i )) = 0, so there is some
B; for which v(8;) > A
In case (2), the argument is the same, the only difference being that now v( < (qi > )=

1 O

Proof of Proposition. We prove the following statement by induction on the degree
d of z. )
Statement: If x € K is such that for all ¢ € Gk, v(x — gx) > n, then there exists

y € K such that
[log,, d]

vx—y) >n-— Z 1

i=1
Note that this inequality is stronger than that asserted in the Proposition. Let
f(X) be the monic minimal polynomial of z over K, of degree d.
For d = 1 we can take y = z. For the induction step, let d > 1. Fist suppose d
is not a p power. Let ¢ be the p-part of d. By Lemma, f19 has a root § satisfying
v(x — B) > n. For any g € Gk, we have

v(8 = gB) =z min {v(8 — z),v(z — gz),v(gz — gB)} = n.
Let d(8) be the degree of 8, then d(8) < d — ¢. By induction hypothesis, there is
an element y € K with
[log, d(B)]

v(B-y)=n— !

Lo piopit
But v(z —y) > min{v(z — 8),v(8 — y)}. So the statement is true for d.

Suppose d is a p power. Let ¢ = d/p. Then by Lemma f19 has a root 3 satisfying
v(ix — B) >n—1/(d — q). As before we see that for all g € G,

v(gB—pB) =n—1/(d—q).
By induction hypothesis we find a y € K such that

[log,, d(5)]
vB-y)Zn—-1/(d—q)— Y, —
- PP
Then
[log,, d(B)] 1 [log,, d] 1
C-pzn-ld-q- 3 S mzn- Y o

i=1 i=1

n the two cases when computing v(( Z )), simply use the formula v(n!) = Y, [n/p?].
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Remark 2.5. In the above proof, the element y that we found is in fact the root
of the linear polynomial (=1 as can be seen from the induction process. This is
none other than the arithmetic average of the conjugates of . However if one makes
the naive estimate v(y) = v(3_, gz — x) — v(d) > ming v(gz — ) —v(d) > n —v(d),
the lower bound depends on the degree d of x, which is not good enough for our
purpose.
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